大规模蛋白质相互作用研究方法进展(4)

2008-12-07 admin ibioo.Com
浏览

4.参考文献
[1] Drewes G, Bouwmeester T. Global approaches to protein–protein interactions. Curr Opin Cell Biol, 2003, 15(2): 199~205
[2] Bauer A, Kuster B. Affinity purification-mass spectrometry.Powerful tools for the characterization of protein complexes.
[3]Eur J Biochem, 2003, 270(4): 570~578 [3] Fields S, Song O K. A novel genetic system to detect protein- protein interactions. Nature, 1989, 340(6230): 245~246
[4] Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403(6770): 623~627
[5] Ito T, Chiba T, Ozawa R, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA, 2001, 98(8): 4569~4574
[6] von Mering C, Krause R, Sne B, et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature, 2002, 417(6887): 399~403
[7] Walhout A J, Temple G F, Brasch M A, et al. Gateway™ Recombinational Cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol, 2000, 328: 575~592
[8] Rain J C, Selig L, De Reuse H, et al. The protein-protein interaction map of Helicobacter pylori. Nature, 2001, 409 (6817): 211~215
[9] Giot L, Bader J S, Brouwer C, et al. A protein interaction map of Drosophila melanogaster. Science, 2003, 302(5651): 1727~1736
[10] Li S M, Armstrong C M, Bertin N, et al. A map of the interactome network of the metazoan C. elegans. Science, 2004, 303(5657): 540~543
[11] Stelzl U, Worm U, Lalowski M, et al. A human proteinprotein interaction network: a resource for annotating the proteome. Cell, 2005, 122(6): 957~968
[12] Rual J F, Venkatesan K, Hao T, et al. Towards a proteomescale map of the human protein–protein interaction network. Nature, 2005, 437(7062): 1173~1178
[13] Rigaut G, Shevchenko A, Rutz B, et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol, 1999, 17(10): 1030~1032
[14] Bauer A, Kuster B. Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. Eur J Biochem, 2003, 270(4): 570~578
[15] Dziembowski A, Seraphin B. Recent developments in the analysis of protein complexes. FEBS Lett, 2004, 556(1-3): 1~6
[16] Gavin A C, Bösche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415(6868): 141~147
[17] Forler D, Kocher T, Rode M, et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat Biotechnol, 2003, 21(1): 89~92
[18] Zhou D, Ren J X, Ryan T M, et al. Rapid tagging of endogenous mouse genes by recombineering and ES cell complementation of tetraploid blastocysts. Nucleic Acids Res, 2004, 32(16): e128
[19] Honey S, Schneider B L, Schieltz D M, et al. A novel multiple affinity purification tag and its use in identification of proteins associated with a cyclin-CDK complex. Nucleic Acids Res, 2001, 29(4): E24
[20] Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 2002, 415(6868): 180~183
[21] Zhong J, Haynes P A, Zhang S, et al. Development of a system for the study of protein-protein interactions in planta: characterization of a TATA-box binding protein complex in Oryza sativa. J Proteome Res, 2003, 2(5): 514~522 [22] Blagoev B, Ong S E, Kratchmarova I, et al. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol, 2004, 22(9): 1139~1145
[23] Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips. Science, 2001, 293 (5537): 2101~2105
[24] Espejo A, Cote J, Bednarek A, et al. A protein-domain microarray identifies novel protein–protein interactions. Biochem J, 2002, 367(Pt3): 697~702
[25] Hiller R, Laffer S, Harwanegg C, et al. Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J, 2002, 16(3): 414~416
[26] Sreekumar A, Nyati M K, Varambally S, et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res, 2001, 61(20): 7585~7593
[27] Ptacek J, Devgan G, Michaud G, et al. Global analysis of protein phosphorylation in yeast. Nature, 2005, 438(7068): 679~684  
[28] Overbeek R, Fonstein M, D’Souza M, et al. The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA, 1999, 96(6): 2896~2901
[29] Huynen M, Snel B, Lathe W 3rd, et al. Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res, 2000, 10(8): 1204~1210
[30] Pellegrini M, Marcotte E M, Thompson M J, et al. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA, 1999, 96 (8): 4285~4288
[31] Marcotte E M, Pellegrini M, Thompson M J, et al. A combined algorithm for genome-wide prediction of protein function. Nature, 1999, 402(6757): 83~86
[32] Enright A J, Iliopoulos I, Kyrpodes N C, et al. Protein interaction maps for complete genomes based on gene fusion events. Nature, 1999, 402(6757): 86~90
[33] Stuart J M, Segal E, Koller D, et al. A gene co-expression network for global discovery of conserved genetic modules. Science, 2003, 302(5643): 249~255
[34] Washburn M P, Wolters D, Yates J R 3rd, et al. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol, 2001, 19(3): 242~247 [35] Huh W K, Falvo J V, Gerke L C, et al. Global analysis of protein localization in budding yeast. Nature, 2003, 425 (6959): 686~691